2% Fermilab

Synergia: Driving Massively Parallel Particle
Accelerator Simulations with Python

QIMING LU, JAMES AMUNDSON AND ERIC STERN
FERMI NATIONAL ACCELERATOR LABORATORY

WHAT: SYNERGIA

ACCELERATOR SIMULATION PACKAGE

Designed for range of computing resources

Laptops and desktops
Clusters
Supercomputers

GPU/Intel MIC
acceleration platform

Beam dynamics

Independent-particle
Collective effects

WHO: PERSONNEL

SYNERGIA ComPASS

A SciDAC project

is developed and maintained by the

ACCELERATOR SIMULATION GROUP
SCIENTIFIC COMPUTING DIVISION
FERMILAB

James Amundson, Paul Lebrun, Qiming Lu, Alex Marcidin,
Leo Michelotti (CHEF), Chong Shik Park, (Panagiotis Spentzouris),
and Eric Stern

WHAT: SYNERGIA

PHYSICS

Single-particle physics

Provided by CHEF C++ library
Direct symplectic tracking, and/or arbitrary-order polynomial maps

Apertures

Collective effects (single and multiple bunches)

Space charge
WELGRIECE
Electron cloud, Beam-beam to be developed

WHAT: SYNERGIA

H=Hsp H=Hsp—|—|—|sp H=HCO||

T E C H N | Q U E S sinilel— collective
particie effects
optics

Split-Operator
Allows to approximate the evolution operator for a time t by
O(t) — OSP(t/Q)Ocoll(t) Osp <t/2)
Particle-in-Cell

Allows to simulate the large number of particles in a bunch (typically
O(10%)) by a much smaller number of macro-particles (O(107)).
Collective eftects are calculated using fields calculated on discrete
meshes with O(10°) degrees of freedom

WHAT: SYNERGIA

PARALLEL SCALING

bunches

64 128 256 512 1024
. . 30 | |
Single-bunch strong scaling =
25 A
. 16 to 16,384 cores Weak scalia
ed :
. . = 20 1 eaK SsCalin rom
32x32x1024 grid, 105M particles J
s . 64 to 1024 bunches
: 8192 to 131,072 cores
1e3 1
- 5
= Ideal
2 o] Actual
=) .
(% 1 92 i 8192 16384 32768 65536 131072
"3 BG/P (Intrepid) Cores
£
l_
1 2 4 8 16 32 64 128 256
1el 20
Propagate Total (actual)
Propagate Total (ideal) %l ——8—e—a—-a—>8—-a—-=
—— Collective Ops. 16 -
—— Independent Ops.
Charge Deposition 14 .
1e0 2 . Weak scaling from
g M to 256M particles
16 32 64 128 256 512 1k 2k 4K 8k 16k 2 3
Nurmber of Cores " 128 to 32,/68 cores
.
5 Ideal
1 Actual
Benchmarks on ALCF's .
128 256 512 1k 2k 4k 8k 16k 32k

Intrepid (BG/P) and Mira (BG/Q)

WHAT: SYNERGIA

PRODUCTION

File

| & Job Scheduling Policy on BG/... 3¢

Edit View History Bookmarks Tools Help

Accelerator Simulations Clus...

& Intrepid Machine State - ALC...

\ anl.gov

3 Fermilabwv

5 Most Visited v [Eric's bookmarksv [gpythonv %Foctave w Wikipedia

Argonne'\ Intrepid Activity

NATIONAL LABORATORY

Home | tntrepia | Actity

YR

Running Jobs

Queued

636542 DirectNoise

< 7-Day Forecast for... [FJPAC09v

Job Id roject me Walltime
D
PetSimSuper :26:44 12:00:
| R10 | Ri11 | R12 | R13 | PetSimSuper :32: :00:

6365834 ParPhySim :04: 12:00:
637194 PetSimSuper :54: :00:
636866 ParPhySim 9:17: :00:
‘637151‘ SiliconeRubberAlt 41 6:00:

131,072 + 16,384

v &1 |*§v ion about python configurationd@| ik

ANL-R06-M0-512
ANL-R06-M1-512
ANL-RO0-R03-4096
ANL-RO7-M1-512
ANL-R10-R47-32768
ANL-RO7-M0-512
ANL-R04-R05-2048

5 Project-X v

prod-long
512
4096
512
32768
512
2048

prod-long
prod-long
prod-long
prod-capability
prod-short
prod-short

90% of machine

vn
script
vn

script
script
script

=147,456 cores

WHAT: SYNERGIA

EVOLUTION

* Synergia 1 was a combination of
IMPACT (F90) and CHEF (C++) +

fronted (Python)

* Synergia 2 started as a proof-of-
concept for a Python driver.
Design heavily influenced by
IMPACT and Fortran. Evolved its

own C++ space charge solvers

* Synergia 2.1 developed into a
robust, pure-C++ class structure
with a Python-C++ interface

SYNERGIA

WHY PYTHON?

Realistic accelerator simulations require a very complicated
description of simulation parameters

Using Python as a driver gives the end user access to a full
programming language to use in simulation description

We did not have to develop and maintain a new language
End users do not have to learn YASPL (yet another single-purpose

language)

Capable of creating dynamic simulations including time-
varying machine parameters and active feedback

WHY PYTHON

EXAMPLE 1 — ACTIVE DAMPING

Toy example of real-world application

=)

N

Momentum
Kicker

ACCELERATOR
RING

Beam Position

Monitor

Counteract instabilities induced by waketield

WHY PYTHON

EXAMPLE 1 — ACTIVE DAMPING

from synergia import Propagate_actions, Pickle_helper,
bunch.Core_diagnostics

class Damper_actions(Propagate_actions, Pickle_helper):
def __init__(self, bpm_location, damper_location):

Propagate_actions.__init__(self)
Pickle_helper.__init__(self, bpm_location, damper_location)
self.bpm_location = bpm_location
self.damper_location = damper_location
self.bunchx = 0.0
...

def step_end_action(self, stepper, step, bunch, turn_num, step_num):
Measure the bunch position at the pickup (BPM) location
if step_num == self.bpm_location:
self.bunchx = Core_diagnostics().calculate_mean(bunch)[0]

Shift the bunch position at the damper location

elif step_num == self.damper_location:
kick x momentum to restore position
bunch.get_local_particles()[:, 1] += -gain*bunchx/self.betax

WHY PYTHON

EXAMPLE 2 — MUZE

Production Solenoid Proton Beam

— Transport Solenoid P
P \ . /’F —
———— ——

Calorimeter
Tracker

Real example of real-world application

\< Resonant extraction scheme for mu2e

~ Debuncher Ring

experiment at Fermilab

7 gt e c: Extraction for experiment requires
ramping of magnet strength to move
selected particles onto resonance

WHY PYTHON EXAMPLE 2 — MUZE

from synergia import Propagate_actions, Pickle_helper

class Ramp_actions(Propagate_actions, Pickle_helper):
def __init__(self, ramp_turns, turns_to_extract, inital_kl1,
final_k1, final_k21, rfko_kicker):
Propagate_actions.__init__(self)
Pickle_helper.__init__(self, ramp_turns, turns_to_extract,
initial_k1l, final_k1, final_k21, rfko_kicker)
o

def turn_end_action(self, stepper, bunch, turn_num):
synergia_elements = \
stepper.get_lattice_simulator().get_lattice().get_elements()
#o...

if turn_num <= self.ramp_turns:

index = 0
for element in synergia_elements:
if element.get_type() == "multipole":

new_k21 = self.final_k21[index]*turn_num / \
self.ramp_turns
element.set_double_attribute("k21", new_k21)
index += 1
if turn_num == 1:

old_intensity = bunch.get_total_num()

n@ = old_intensity

avg_rate = n@ / float(self.turns_to_extract - self.ramp_turns)

SYNERGIA

WHY NOT PYTHON?Y

Package dependencies

ot Synergia

Portability
Shared libraries

Everyone says they support shared libraries.

In practice, shared versions of installed Debugging / PI’Oﬂ“ﬂg
ibraries rarely available on HPC platforms There are tools which support the
Cross-compilation of Python mixed Python-C++ application,

but choices are very limited

SYNERGIA

C++ CORE CLASSES

Bunch, Lattice, Propagator,
Steps, Operators, Actions,

Diagnostics, and etc.

OPERATOR

e

PROPAGATOR (APPLIES) LATTICE BUNCH

ACTIONS

Multiple dependencies on Boost:
MultiArray, shared_ptr,
Filesystem, Test, Python, Spirit
and Serialization

SYNERGIA

PYTHON-C++4+ INTERFACE

Boost Python: expose C++ interfaces to Python

Classes can be wrapped straightforwardly, preserving inheritance
relations. Python classes can inhered from C++ classes

C++ classes can call inherited methods in Python classes through
callbacks

Overloaded C++ signatures can be translated to Python with a
minimum of effort

Classes and shared pointers to classes can be interchanged
transparently at the Python level

SYNERGIA

PYTHON-C++4+ INTERFACE

C++ code looks like C++ code
Python code looks like Python code

C++ containers can be converted to native Python
containers with ease

std::vector and std::1ist ==> Python list
Boost .MultiArray ==> numpy arrays

Minimal overhead, no need to copy the underlying data

SYNERGIA

PYTHON-C++4+ INTERFACE

MPI communicators are handled through a thin wrapper in
C++ called Commxx

In tirst version of Synergia mpi4py communicators are
convertible to/from Commxx objects

Commxx evolves to accommodate the need for serializing/
reconstructing MPl communicators

in python scripts, mpidpy calls MPT_Tnit() / MPI_Finalize()

SYNERGIA

SERIALIZATION

Checkpointing is an important feature for large-scale simulation
applications

Checkpointing by re-initialization is impractical for Synergia
Synergia simulations can be dynamic
it is really a library that end-users use to create their own applications

Synergia uses an object serialization scheme that allows the state of
each of its object (including user defined Python objects derived
from Synergia) to be written to and/or restored from disk

SYNERGIA

SERIALIZATION

C++ OBJECTS PYTHON OBJECTS

BOOST.SERIALIZATION PYTHON.PICKLE

USER DEFINED PYTHON OBJECTS
DERIVED FROM PYTHON WRAPPED C++ OBJECTS

SYNERGIA.PICKLE_HELPER

1. PYTHON.PICKLE: PYTHON OBJECT -> PICKLE STRING
2. BOOST.SERIALIZATION: PICKLE STRING -> BINARY OR XML
(FuLLY AUTOMATED)

SYNERGIA

SERIALIZATION

template<class Archive>
void save(Archive & ar, const unsigned int version) const
{
ar &
BOOST_SERTALIZATION_BASE_OBJECT_NVP(Propagate_actions);
std: :string pickled_object(
extract<std: :string>Cimport("cPickle").attr("dump")(self)));
ar & BOOST_SERIALIZATION_NVP(pickled_object);
}
template<class Archive> SYNERGIA.PICKLE _HELPER
void load(Archive & ar, const unsigned int version) I
{
ar & .
class Pickle_helper:
BOOST_SERTALIZATION_BASE_OBJECT_NVP(Propagate_actions); kst E P dict -1
std: :string pickled_object; —g¢ s.a.e_manages_*lc -
ar & BOOST_SERIALIZATION_NVP(pickled_object); def __init__(self, *args):
str pickle_str(pickled_object); self.args = args
self = import("cPickle").attr("loads")(pickle_str); def __getinitargs__(self):
¥ return self.args
BOOST_SERIALIZATION_SPLIT_MEMBER() def __getstate__(self):
return self.__dict__
def __setstate__(self, state):
BOOST.SERIALIZATION self. dict__ = state
IN PROPAGATE_ACTIONS

"Python is wonderful.”

